BioMoby Python

Version 0.6 10/22/2004

Classes

inherits

inherits

Generallnformations

inherits

uses . .
inherits

inherits

MobyContent

Registration classes

Queries

uses

The kernel of the system is made of modules SOAPProxy and MiniDom.

The class Client describes a connexion to bioMoby and contains the assiociated methods (registration,

queries, etc.)

The class Service wraps informations about the remote service and executes remote methods.

The class ServiceQuery builds queries for the method findService.

The class ServiceList manages lists of services, it is the result of method FindService.

Some classes doesn't appear in this diagram, these classes are related to Moby Object's ontology.

API Documentation

See the index.html in the <package src_dir>/doc

How does it works?

First step, import modules:
In all your Moby Client applications you should add:
>>>from bioMoby import *

This will add all necessary classes in order to deal with bioMoby server and registrated services.

Set up a connection with the bioMoby server:
First declare a bioMoby client:
>>>client=Client()

by default, url of the server is http://mobycentral.cbr.ncr.ca/cgi-bin/MOBYQ5/mobycentral.pl.
You can specify another server with the url parameter:

>>>client=Client(url="http://anotherMobyServer”)

You can also specify a different namespace for your mobyServer with the parameter ns:

>>>client=Client(url="http://anotherMobyServer/cgi-bin/server.pl”,
ns="http://anotherMobyServer//namespace)
Find services?
For example, you are looking for a service which name is getSequenceFromPDB:
>>>client.findService(serviceName='getSequenceFromPDB')
The command will return a ServiceList object that contains your service.
The following examples show how to find services with specific types:
>>>query=ServiceQuery(inputObjects=[
(", 'DNASequence’, ['NCBI gi', 'NCBI_Acc']),
D
>>>query=ServiceQuery(outputObjects'=[
("', 'GenericSequence', [])
D
>>>query=ServiceQuery(protocol='cgi',
outputObjects=[

(‘GenericSequence','aObjectType’, ['EMBLY, 'PIR’, 'NCBI gi',
'NCBI_Acc'])

D
As you can see, an article is described in a tuple: (‘articleName', 'objectType', ['Namespace'])
after, we can retrieve our list of services:
>>>1istOfServices=client.findservice(query)

The variable listOfServices will contain a list of services that matches your query. If the command is
successful, the command len(listOfServices) should return at least one:

>>>len(listOfServices)
<number of services found>
We want to have some informations about the first service:

>>>service=listOfServices[0]

List of input objects:

>>>service.inputObjects

List of output objects:

>>>service.outputObjects

the XML of the service:

>>>str(service)

If you know the service's name and you want to use the service directly, you can retrieve its WSDL.:
>>>gervice=Service(client.retrieveServiceWSDL('getSequenceFromPDB'))

The command will build a service from the given WSDL. Not all informations will be retrieved from the
WSDL such as input/output objects and secondary parameters.

Prepare the parameters for the service:
As described in the Moby's API, all Moby's objects are XML strings:
<Object namespace="a namespace” id="an ID”>Content</Object>
Use the MobyMarshaller to translate your Python Object into a Moby XML Object:
>>>myObject=MyOwnMobyObject()
>>>m=MobyMarshaller()
>>>m.dumps(myObject)
If the command is successful, you should have the XML form of the object.
To use objects with services, we must build a content object:
>>>mobyContent=MobyContent({'query1':[myObject]})
Queries are always lists.
To add optional parameters for the query, specify them with the Parameter object:
>>>paraml=Parameter('threshold': 1.24)

>>>mobyContent=MobyContent({'query1':[aPDB, param1]})

A few words about the MobyMarshal module:

The MobyMarshaller object will translate a Python Object into its XML form, the MobyUnmarshaller
object do the contrary.

You can build your own Moby(Un)Marshaller Object (and it is recommanded), all you have to do is to
build a subclass and override the dumps method (for the MobyMarshaller class) and the loads method(for
the MobyUnmarshaller.

This is how the MobyUnmarshaller class works:
>>>um=Unmarshaller()

>>>o0=um.loads(xml)

If you want to make your own class, you'll need to specify two methods:

* toMoby:it will serialize your object in XML

* fromMoby it will deserialize the XML

Execution of services

MobyContent is now a Moby Content Object, send it to your remote bioMoby service and get the
result:

>>>result=service.execute(mobyContent)

The variable result is a XML string but it can be reused with another service as the method “execute”
makes no differences between the XML string and a MobyContent object:

>>>resultl =servicel.execute(result)

Or if you want further manipulations, you can first translate it into a MobyContent object by using a
MobyUnmarshaller Object:

>>>um=MobyUnmarshaller()
>>>mc=um.loads(result)
the variable mc will contain a MobyContent object.

From the 0.5 version, execute can return a MobyContent Object directly without having to create a
MobyUnmarshaller object:

>>>result=service.execute(mobycontent, returnXml=False)
This will return a MobyContent object.

From the 0.6 Version, you can trace SOAP calls between your script and the service by using the
debug option:

>>>result=service.execute(mobycontent, debug=True)
The execute method will print an output like this:

In build.

In dump. obj= <?xml version="1.0" encoding="UTF-8"?><moby:MOBY
xmlns:moby="http://www.biomoby.org/moby"><moby:mobyContent><moby:mobyData
moby:querylD='query1'><moby:Simple><moby:Object moby:namespace="AGI_LocusCode" moby:id="At3g19100"
moby:articleName=""/></moby:Simple></moby:mobyData></moby:mobyContent></moby:MOBY>
In dump_string.

In gentag.

In dumper.

POST /cgi-bin/moby_services/Services/genomic_services/genomic_services.cgi HTTP/1.0

Host: arabidopsis.info

User-agent: SOAPpy 0.11.4 (http://pywebsvcs.sf.net)

Content-type: text/xml; charset="UTF-8"

Content-length: 904

SOAPACction: "http://biomoby.org/#getNASC_codebyAGI_locus"

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:getNASC_codebyAGI_locus xmlns:ns1="http://biomoby.org/" SOAP-ENC:root="1">

<v1 xsi:type="xsd:string">&lIt;?xml version="1.0" encoding="UTF-8"?>&It;moby:MOBY
xmlns:moby="http://www.biomoby.org/moby"><moby:mobyContent>&It;moby:mobyData
moby:querylD='query1'>&It;moby:Simple>&It;moby:Object moby:namespace="AGI_LocusCode" moby:id="At3g19100"
moby:articleName=""/></moby:Simple></moby:mobyData></moby:mobyContent> </moby:MOBY & gt;</v1>
</ns1:getNASC_codebyAGI_locus>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

code= 500

msg= Internal Server Error

headers= Date: Fri, 22 Oct 2004 07:36:41 GMT

Server: Apache/2.0.40 (Red Hat Linux)

Content-Length: 617

Connection: close
Content-Type: text/html; charset=is0-8859-1

content-type= text/html; charset=iso-8859-1

data= <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>500 Internal Server Error</title>

</head><body>

<hl>Internal Server Error</h1>

<p>The server encountered an internal error or

misconfiguration and was unable to complete

your request.</p>

<p>Please contact the server administrator,

david@arabidopsis.info and inform them of the time the error occurred,
and anything you might have done that may have

caused the error.</p>

<p>More information about this error may be available

in the server error log.</p>

<hr />

<address>Apache/2.0.40 Server at arabidopsis.info Port 80</address>
</body></html>

Incoming HTTP headers *## ikttt oo oo ook

HTTP/1.? 500 Internal Server Error

Date: Fri, 22 Oct 2004 07:36:41 GMT
Server: Apache/2.0.40 (Red Hat Linux)
Content-Length: 617

Connection: close

Content-Type: text/html; charset=iso-8859-1

Small scripts in the utils directory.

The moby2python script

You'll find in the <bioMoby-python directory>/utils a small script that generates a Python class from a
bioMoby XML definition.

With no argument:
$moby2python

In the output directory, you'll find all the registrated classes converted in different files, for example
SchematikonStructureAnnotation.py contains a MobySchematikonStructureAnnotation object.

With arguments:
$moby2python <a directory> Objectl Object2 Object3
A module will be generated with only registrated Objectl Object2 and Object3.

If you want to use these classes with the MobyMarshal module, you must put them in the <bioMoby-
python>/ontology directory. Thus, classes are managed like any other Python's object.

This can be useful when you want to link Moby objects with BioPython's objects.

The objectBrowser script:

In order to run the script, you'll need to have the wxPython package installed. It can be retrieved on
http://sourceforge.net/project/showfiles.php?group_id=10718.

This script represents the bioMoby ontology in a Tree:

Object browser
URL Descriptioh
}hﬂp Jimobycentral chrnre carcgi-bin/MOBY 05/mobycent PDB compressed in zlib and encoded in base 64
ME
}hﬂp:ffmuhycemral.cbr.nrc carMOBY/Central
Contact Email
m]rphs—feedhack@ehgm jussieu
B ~
FASTA & Authority URI
Decypher_Text]mnserv rpbis jussieufr
Tree
TEST HAS
MNCBI_BLAST _Text
PubMed-MEDLINE
FPDB-formatted-text
=—GFF HASA
GFF1
GFF3
GFF2
GFFZ_5
Htext-hase64 Services that take this data typa as input:
hE4_Encoded_Postscript Wead Pot
hE4 _PMG
hf: |_PDB
= hB4_encoded_gif
SimpleannotatedGIFimage Services that take this data type as output)
=hB4_encoded_jpeg BasicBuilder iy
Simplesnnotated JPEGImage BlastFasta'isArabiPrateincoding
text-uuencaded BlastRawSensArahiContigs
text-hitmnl B_IastﬁawSEquArabi.F'mtEincndmg /
=1 ted-wml /
=) = Close

In order to retrieve the ontology, click on the “Retrieve objects” button. You'll see (after some time)
the tree representing the ontology of bioMoby.

Select a node in the tree view in order to have more informations about the object.

Register services and objects with bioMoby-python

Register objects:
First set up informations about your object:
>>>zmPDB=0bjectClass(
authURI='prot3.rpbs.jussieu.fr’,
contactEmail='yanwong@ebgm.jussieu.fr',
description='a WIP of a compacted and encoded PDB file',
objectType='zPDB',
relationships=[('ISA',{":'text-base64'})]
b
then register:
>>>result=zmPDB.register()
To see if you are lucky:
>>>result.isSuccess()
If something went wrong during the process, you can have the message delivered by bioMoby:
>>>result.message
An object can be registrated even if it does not exist as an implemented class!

Relationships are described in a list of dictionary, for example the list tells that the entity is an object
and has strings:

[('ISA', {": 'Object'}),('HAS',{'SEQ":'String', 'STR':'String'})]

Register services:

First build your service:

service=Service(
{'category':'moby’,
‘name':'getStrideFromPDB',
'type':'Analysis’,
‘url':'http://prot3.rpbs.jussieu.fr:8080/ZStrideService/ZStrideService.py',
'signatureURL':'http://prot3.rpbs.jussieu.fr:8080/RDF",
'authoritative':0,
‘contactEmail':'yanwong@ebgm.jussieu.fr',
‘authURI':'prot3.rpbs.jussieu.fr",
'description':'This is a service that uses stride, it takes as argument a compressed PDB file',
'inputObjects':[ServiceArticle(name=", type="'zPDB',namespaces=[])],
'‘outputObjects': [ServiceArticle(name=", type='StrideOutput',namespaces=[])]
b

inputObjects, outputObjects must be described using ServiceArticle object, if you need to specify a
collection of ServiceArticle, put a list of ServiceArticle objects:

{'collectionName':[ServiceArticle, ServiceArticle]}

After the registration is completed, you'll have to save the resulting RDF in the location where the
bioMoby agent can find it:

>>result=service.register()
>>result.RDF

<The RDF of the registrated service>

How to build bioMoby web services

The bioMoby web service API:

The main class of this part is the Dispatcher Class. It is built upon the Multithread Class and allow
simultaneous treatment of a MobyContent object as the MobyContent object is made of several
independent queries.

The Dispatcher class needs an Invocator class (it makes call to applications, database or whatever
treatment you want) a formatter function (it does the formatting results (transform raw results into Moby
objects for example) and a toParameters function (that translate Moby queries into Invocator's
parameters)

In order to ease or convert already existing applications into webservices, the package provides some
prebuild Classes:

* Locallnvocator: use a command line application as a data provider
It takes a tuple as argument:
(commandName as String, commandParameter as String, [temporary files], [outputfiles])
return the result of the call of the command line (either it takes all output files or the stdout)
* CGIPostInvocator: use a CGI application as a data provider
return the result of the call of the CGI script

Of course you can build your own Invocator class, the only thing you have to provide is a execute()
method.

These classes intended to help you to write webservices from CLI applications or simple CGI scripts.
However, I strongly recommand to do things differently!

Build a web service from a CLI application

Here an example built upon Stride. Stride take as argument a PDB and return a formatted text as a
result:

def _toParaneters(queryData):
if len(queryData)!=1:
rai se Exception, "A single PDB object/file is needed"

dat um=quer yDat a[0]

from bi oMby i nport MbyCbj ect, MbyZnPDB
import random wurllib

commandNane="/appl i cati on/ bi n/stri de"

par anet ers=[]
tempfil es=[]

tfs="/tnp/tnp' + “int(random randon()*1000000)"

if datum __class__ is Mbyoject and dat um namespace=="PDB":
u=url l'ib.url open
("http://ww.rcshb. org/pdb/ cgi/export.cgi/"+datum i d+"?f or mat =PDB&pdbl d=" +dat um i d+"
&conpr essi on=None")
f=file(tfs,"w")
f.wite(u.read())
u. cl ose()
f.close()
elif 'content' in dir(datum) and ' _articleNane' in dir(datum:
fp=file(tfs,"w")
fp.wite(datum content)
fp.close

paraneters. append("-f "+tfs)
tenpfil es. append(tfs)

return (commandNane, "".join(paraneters), tenpfiles)

def stride(mbyContent):
"""Di spatch the contents into a pool of invocators

from bi oMby inport Dispatcher, Locallnvocator
d=Di spat cher (nobyCont ent, Local | nvocator, __ toParaneters)
return d.execute()

fromZSl inport dispatch
di spat ch. asCd ()

The dispatcher does all the job, translating (thanks to the toParameters function) the MobyObjects
into CLI arguments and sending parameters to the Locallnvocator class.

This example show you how to implement a web service from a CLI that return outputfiles:

#Cl ustal w

def _toParaneters(querybData):
conmmandNane="cl| ust al W'
par anet ers=[]
tenmpfiles=[]
outputfiles=[]

from bi oMby inport Paraneter
i nport random string

tfs="/tnmp/tnp'+ “int(random randon()*1000000)"

for datumin queryData:

if datum __class__ is Paraneter:

par anmet er s. append("-"+datum arti cl eName+" =" +dat um val ue)
el se:

try:

fp=file(tfs,"w")
fp.wite(datum content)
fp.close
par anet ers. append("-infile="+tfs)
tenpfil es. append(tfs)
except :
pass

tenpfil es. append(tfs+".dnd")
outputfiles.append(tfs+".aln")

return (commandNane, " type=p -align "+string.join(paranmeters,” "), tenpfiles,
outputfiles)

def clustal W nobyContent):
from bi oMby inport Dispatcher, Locallnvocator

d=Di spat cher (nobyContent, Local |l nvocator, _toParaneters)
return d. execute()

fromZSl inport dispatch
di spat ch. asCd ()

Asynchronous webservices

Unlike synchronous webservices, asynchronous web services don't return immediately the results!
Sometimes treatment can be lonb, the webserver can't hold a connection quite long and will probably cut
the connection, the Client interface will then return a timeout exception.

In order to solve this issue, the dispatcher return any results within the two minutes, either it returns

the results of the requests or it will return an MobyObject with a JOBSESSION namespace.

If you receive an object with a JOBSESSION, this probably means that your treatment will last more
that two minutes!

It is then up to your script to make an active wait. Resend the MobyContent object with your
JOBSESSION in order to retrieve results. The dispatcher will look for the results according to the
request, if it can't retrieve results, it will send the request back.

Note that the client interface of the bioMoby-python API doesn't manage automatic recall to
asynchronous webservices (the program has to do it by himself).

How does work the Dispatcher:

It first receives an XML representing the MobyContent object. It then splits the MobyContent in
several queries.

Queries are then transformed into Invocator's parameters via the toParameters function.
The queries are then treated with a pool of thread and the Invocator Class.

Results of Queries are then sent to the formatter function. This function tranforms raw results sent by
Invocator Objects into a list of Moby Objects.

The final MobyContent Object is sent back when ALL queries are treated.

Examples:

Sources can be found in <packages src_dir>/tutorials

tutorials/MobyCentral: how to deal with the Moby Central server:
registerService.py: Show how to register a service
retrieveServices.py: Show how to retrieve services name and description

servicesDump.py: A small program that dump all informations about services

tutorials/Service: how to deal with Moby Services:
async.py: How to make asynchronous call to a webservice.
testMarshaller.py: How to use the mobyMarshal module
testMobyService.py: from a Perl Example, however, it uses mobyMarshal module to read data
testMobyService2.py: from a Perl Example (the one with flowers)

tutorials/webservice: An example of how to build webservices with the bioMoby Python API

